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Event algebra

Basic concepts
ÅSample spaceǗ : set of  all possible events

ÅElementary events Ƿ: disjointeventswith a singleoutcome

ÅSet of  events ╕: some or all subsets of  Ǘ, that is the power setof  Ǘ: 
ὊṖςǗand an algebra defined on it(Ǳ-algebra)

ÅEvents ═ȟ║ȟȣ : subsets of  Ὂ, can be elementary or complex

ÅProbability measure ὖȡὊɸ πȟρ: real valued additive function

ÅAn eventhas probability: e.g. ὖὃȟὖ ὃȟὖὃ᷊ὄ etc.

ÅCertain event: ὖɱ ρ, impossible event: ὖᶮ π
ÅThe triplet ɱȟὊȟὖ defines a probability space
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Event algebra ðexample

Dice Roll

ÅSample space Ǘ : {1,2,3,4,5,6, even, odd, >3, etc}

ÅElementary events Ƿ: {1,2,3,4,5,6}

ÅSet of  considered events╕: eg.: { ,ɲ1,2,3,4,5,6, even}

ÅEvents ═ȟ║ȟȣ : {2, even, greater than 3 and odd, 4&5, etc}

ÅProbability measureὖȡὊɸ πȟρ: òfavorable cases/possible casesó (Laplace)

ÅAn eventhas probability: e.g. ὖὃȟὖ ὃȟὖὃ᷊ὄ etc.

ÅCertainevent: ὖɱ ρ, impossible event: ὖᶮ π

ÅThe triplet ɱȟὊȟὖ defines a probability space



2019. 02. 27. 4

Event algebra ðconditional probability

ÅConditionalprobability(definition)

ὖὃὄ ḧ
ɾ

ὖὃɾὄ ὖὃὄὖὄ ὖὄὃὖὃ

ÅIndependent events

ὖὃὄ ὖὃ ïίὖὄὃ ὖὄ

ὖὃɾὄ ὖὃὖὄ

ÅCollectively exhaustive events

ὄ Ǘ ὄɾὄ ᶮ

B

Ǘ

 A
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Correlation and causality

ÅConsider two events ὃand ὄwith the following inequality

ὖὄȿὃ ὖὄȿὃ

ÅWhat does it indicate?

Dice roll example: ὄ φ , ὃ ÅÖÅÎ

ὖ φ ρȾφ ὖ ÅÖÅÎ

LHS ὖὄȿὃ
᷊ Ⱦ

Ⱦ
as expected
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Correlation and causality

RHS ὖὄȿὃ
᷊

᷊ Ⱦ Ⱦ

Ⱦ
π cannot roll 6 and odd at the same time

ÅThe inequality ὖὄȿὃ ὖὄȿὃ seems to indicate that event ὃincreases the 

probability of  event ὄand there is an asymmetric relation between them

ÅThe relation is symmetric actually
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Correlation and causality

ὖὄȿὃ ὖὄȿὃ

ὖὃ᷊ὄ

ὖὃ

ὖὄ ὖὃ᷊ὄ

ρ ὖὃ

ὖὃ᷊ὄ ρ 0! ὖὄ ὖὃ᷊ὄ 0!

ὖὃ᷊ὄ ὖὃὖὄ

Å ὖὄȿὃ ὖὄȿὃ and ὖὃȿὄ ὖὃȿὄ implies the same, symmetric relation:

Å Events ὃand ὄare correlated but no casual relation can be read out from these inequalities

Å Either there is a causal relation between ὃand ὄor there is a common cause

Å Think about: smoking ðyellow finger tips ðlung cancer, water level in Venice - price of  bread in London
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Monty Hall problem
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Monty Hall problem
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Monty Hall problem

ÅSo we are better off  changing our mind: ᴼ

ÅBut why not 50-50%?

ÅThe situation when the host opens a door in 

advance and you choose from the two remaining 

doors is the same or not?

ÅNot the same, because the action of  the host 

depends on our choice

ÅThe host tells us information by opening a door



Bayes-theorem

ÅLaw of  totalprobabilities

ὖὃ ὖὃɾὄ ὖὃ|ὄ ὖὄ

ÅBayes-theorem

╟║▓═
╟═║▓╟║▓

╟═

╟═║▓╟║▓
В░
╝ ╟═ȿ║░╟║░

Usual terminology

Posterior:ὖὄȿὃ Likelihood:ὖὃȿὄ

Prior: ὖὄ Evidence, marginallikelihood: ὖὃ

Ǘ

 B1

B2

Bi

A
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Bayesian inference

Application of  the Bayes-theorem for hypothesis testing

ÅWe have a prior probability, that hypothesis Ὄis true: ὖὌ

ÅWe observe an event Ὁ, which is the evidence or observation and 

associate the probability: ὖὉ

ÅThe likelihood that Ὁhappens given Ὄis true is: ὖὉȿὌ

ÅThe posterior probability that Ὄis true is given by

ὖὌὉ
ὖὉȿὌὖὌ

ὖὉ

ὖὉȿὌὖὌ

ὖὉȿὌὖὌ ὖὉȿὌὖ Ὄ
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Hypothesis test ðloaded coin

ÅSomeone is tossing a coin in the next room and tells us the results

ÅWe have two hypotheses

ÅThe coin is loaded and produces ÈÅÁÄÓwith 70% ὒ

ÅThe coin is fair and does υπϷυπϷ ὒ

ÅWe give probability 0 ὒ that the coin is loaded (at the beginning)

ÅBased on what we hear, how shall we change our belief?

ÅThe probabilities of  the outcomes conditioned on the hypotheses are:

ὖ ÈÅÁÄÓὒ πȢχ ὖ ÔÁÉÌÓ ὒ πȢσ

ὖ ÈÅÁÄÓὒ πȢ5     ὖ ÔÁÉÌÓ ὒ πȢ5
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Hypothesis test ðloaded coin

Å Say the first toss gives ÈÅÁÄÓwhich results in:

ὖ ὒ ὖ ὒ ÈÅÁÄÓ

ὖ ὒ
ὖ ÈÅÁÄÓὒὖ ὒ

ὖ ÈÅÁÄÓὒὖ ὒ ὖ ÈÅÁÄÓὒὖ ὒ

ὖ ὒ
πȢχὖ ὒ

πȢχὖ ὒ πȢυρ ὖ ὒ

Å If  we would have ÔÁÉÌÓ instead:

ὖ ὒ
ὖ ÔÁÉÌÓ ὒὖ ὒ

ὖ ÔÁÉÌÓ ὒὖ ὒ ὖ ÔÁÉÌÓὒὖ ὒ

ὖ ὒ
πȢσὖ ὒ

πȢσὖ ὒ πȢυρ ὖ ὒ
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Hypothesis test ðloaded dice

With a concrete prior belief: ὖ ὒ πȢς

Å1. outcome: ÈÅÁÄÓ:

ὖ ὒ
πȢχ πȢς

πȢχ πȢς πȢυ ρ πȢς
πȢςφ

Å1. outcome: ÔÁÉÌÓ:

ὖ ὒ
πȢσ πȢς

πȢσ πȢς πȢυ ρ πȢς
πȢρσ
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Hypothesis test ðloaded dice

If  we get two ÈÅÁÄÓin a row:

ὖ ὒ ὖ ὒȿ ÈÅÁÄÓ

ὖ ὒ
πȢχ πȢςφ

πȢχ πȢςφ πȢυ ρ πȢςφ
πȢσσ

ÅThe second evidence also increases our belief  but with a smaller amount

ÅThis is a recursive process where we use the last result as prior

ÅWe can have more than one concurrent hypotheses about a parameter (or a 
variable)

ÅIn fact we can have continuously many hypotheses (from a parameter space or 
a state space)
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Binomial distribution

ÅThe probability to get Ὧsuccess from ὲtrials is

ὄὯȠὲȟὴ
ὲ
Ὧ
ὴ ρ ὴ

Åὴis the probability of  one trial to succeed

ÅὯis the free variable

ὲ
Ὧ

Ȧ

Ȧ Ȧ
is the binomial coefficient

ÅPronounce: ὲchoose Ὧ

ÅYou can choose Ὧout of  ὲthat many ways
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Binomial distribution

ÅCoin flip

Å6 trials

ÅGetting 3 heads and 3 tails is the most 

probable outcome

ÅIncreasing the number of  trials will produce 

Gaussian-like histogram
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Central limit theorem

Å https://phet.colorado.edu/sims/html/plinko-probability/latest/plinko-probability_hu.html

%% Central limit theorem

% Dice roll

n = 1e4;

R = sum( round (6* rand (n)));

histogram (R)

Tossing a coin n times and getting k heads

https://phet.colorado.edu/sims/html/plinko-probability/latest/plinko-probability_hu.html
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Normal distribution

ÅIs the limit of  the
ÅBinomial distribution: ὄὯȠὲȟὴᴼὔὯȠὲὴȟὲὴρ ὴ
ÅPoisson distribution: ὖὯȠ‗ᴼὔὯȠ‗ȟ‗
ÅChi-squared distribution: … ὯᴼὔὯȟςὯ

ÅGenerally, the sum of  independent, identically distributed random variables 
tends toward a normal distribution

ÅFor a given mean and variance this is the maximum entropy distribution
ÅIt is the least informative distribution

ÅIt minimizes the information that we assume to be there

ÅPhysical systems generally move towards equilibrium, that is maximum entropy state

ÅIt has nice mathematical properties
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Normal distribution

Å̂ ÒÊÁÂÅÁÚÅÇÙÅÎÌÅÔÅÔÉÄÅ
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Create Gaussian noise 

ÅUsually we have a random number generator

ÅWe can generate a random number in the interval 0é1

ÅThe standard deviation is 

ÅThe mean is 0.5

Algorithm

1. Add 12 random numbers ‘ φ, „ ρ

2. Subtract 6 ‘ π, „ ρ

3. Multiply by the desired STD

4. Add the desired mean

x = sum( rand (12, 1e4));

x = x - 6;

x = x * 3;

x = x + 8;

histogram (x,' normalization

',' pdf ')

hold on

t = ( -

3*sigma:0.1:3* sigma )+ mu;

plot ( t,normpdf (t, 8, 3) )
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Gaussian vs White noise

ÅGaussian noise and white noise are not synonyms

ÅGaussian refers the distribution of  the amplitude

ÅWhite means that the values are not correlated in time. The intensity is 
the same at all frequencies and the PDF can be any

ÅA random signal can be white and Gaussian

ÅThis is a desired property

ÅTractable analytic models

ÅGood approximation of  real-world situations

ÅAdditive White Gaussian Noise (AWGN)
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Multivariate normal distribution

ÅJoint and multivariate distributions are 

synonyms

Ὢὀ Ὢὼȟὼȟȣȟὼ
ρ

ς“ ÄÅÔɫ
ÅØÐ

ρ

ς
ὀ ʈ ɫ ὀ ʈ
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Modelling uncertainties

ÅAdditive noise acting on the motion and sensor model

Ø ȿ Ὢ Ø ύ

Ú Ὤ Ø ὺ
random deterministicrandom

ÅHow do we create probabilities from these random variables?

ÅSince Øand Úare usually continuous variables, the probabilities of  
taking specific values are zero.

ÅHowever, Øand Úresiding in some region Ὓand Ὕhave nonzero 
probabilities

ὖØ ȿᶰὛȿØ ὖÚᶰὝȿØ
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Modelling uncertainties

ÅThe probability mass is given by integrating the probability density over a region

ὖØ ȿᶰὛØ ὴØØ ÄØ ὖÚᶰὝØ ὴÚØ ÄÚ

ÅὴØØ is the probability density function associated to the uncertain motion model

ÅὴÚØ is the probability density function associated to the uncertain sensor model

ÅIf  the additive noise is zero mean Gaussian 

ὴØØ ﬞ ØȠὪ Ø ȟ„

ÅSimilarly for the sensor model

ὴÚØ ﬞ ÚȠὬ Ø ȟ„
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Hidden Markov model (HMM)

ÅIn the context of  state estimation (robotics) the value to be 
estimated is the state (or state vector in general) of  an object or 
an ensemble of  objects

ÅThe state in unknown to us (hidden) and possibly evolves in time: 
the system has dynamics

ÅWe can observe the system and obtain a limited amount of  
information, for example

ÅPartial observation of  the state

ÅNoisy measurements
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Markov assumptions

ÅThe current state depends only on the previous state

ὴὀ ὀ ȟὀ ȟȣȟὀ ὴὀȿὀ

ÅThe measurement depends only on the current state

ὴὂ ὀȟὀ ȟȣȟὀ ὴὂȿὀ
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RecursiveBayesianestimation (in discrete time)

ÅEstimate the state vector at timestepὯusing measurements up to Ὧ:

ὴØ Úȡ
ȿ ȿ ȡ

ȿ ȡ

ÅThe denominator is constant and can be expressed as

ὴÚȿÚ ὴÚȿØ ὴØȿÚ ÄØ

ÅThe prior, with the help of  a model of  the system is obtained from the pervious 
posterior through the time-prediction integral (Chapman-Kolmogorov integral):

ὴØȿÚȡ ὴØȿØ ὴØ ȿÚȡ ÄØ

motion model  previous posterior

This was the
Bayes-theorem

ὖὄ ὃ
ὖὃὄ ὖὄ

В ὖὃȿὄ ὖὄ
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Accuracy, precision

The quality of  a sensor can be described 
by its precision and accuracy

ÅAccuracy

ÅMeasures the systematic error (bias)

ÅRelated to the mean of  the measurement

ÅPrecision

ÅMeasure the random error (variability)

ÅRelated to the variance (standard deviation) 
of  the measurement
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Terminology in estimation

ÅStatistic: a function of  the data

ÅEstimator: a function of  the data that intends to describe some 
property of  the underlying distribution

ÅA statistic is not good or bad( or biased or unbiased). It is just a function

ÅAn estimator can be good (unbiased, minimum variance etc.). E.g.: the sample 
mean is an unbiased estimator of  the expected value

ÅFiltering: estimate ὼbased on measurements ᾀȡ
ÅPrediction: estimate ὼ based on measurements ᾀȡ
ÅSmoothing: estimate ὼ based on measurements ᾀȡ



2019. 02. 27. 32

Metric ðEuclidean

Calculate òreal distanceó from coordinate differences

ÅDistance of  two points in 3D: Ὠὖȟὖ

Ὠὖȟὖ ὼ ὼ ώ ώ ᾀ ᾀ

Euclidean metric (in Cartesian coordinates)

Are there other ways to get a distance?
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Metric ðPolar

Polar coordinate system

Åὼ ὶÃÏÓ•

Åώ ὶÓÉÎ•

We can also have 

cylindrial, toroidal, etc

coordinate systems

Ὠ ὼ ὼ ώ ώὨ ὶ ὶ ςὶὶÃÏÓ• •


