

7

ToolStick University Daughter
Card

7.0 Introduction 134

Block Diagram of the ToolStick University DC

7.1 Peripheral Resources and Connections 135

LEDs, Pushbutton Switches, Toggle Switches,
Potentiometer, Temperature Sensor Input, I/O Port
Connections, Analog Signal Connections

7.2 Configuring the University Daughter Card 139

7.3 Connecting the University DC to a PC 140

Debug Adapter Daughter Card

7.4 Hardware Overview of ToolStick Base Adapter 142

7.5 Hardware Overview of ToolStick University
Daughter Card 143

7.6 Starting a Project in SiLab IDE 144

7.7 Blinking the LEDs on the Daughter Card Using
Software Delay 145

134 Chapter 7 ToolStick University Daughter Card

7.0 Introduction
SiLab has developed a C8051F020 based target board specifically
aimed for use in teaching microcontrollers and embedded programming.
There are many peripheral resources on the board such as four push
buttons, eight toggle switches, four LEDs and a potentiometer to
generate a variable analog voltage for ADC input. Many other I/O pins
are available on the board such as the voltage comparator inputs and
DAC outputs. One can also connect a thermistor for which header pin
connections are available. Connections to some digital I/O ports are
available through header pin connections. There is an on-board 22.1184
MHz crystal oscillator for the system clock, though one can use the
microcontroller’s internal oscillator too. All these resources and facilities
make the board, called ToolStick University Daughter Card (DC), very
versatile for teaching and learning the C8051F020 microcontroller. It
immensely facilitates experiments which can be done very easily without
requiring laboratory instruments.

This chapter will explain the ToolStick University Daughter Card in details
and provide example programs to initialize it and use some of the
resources.

Block Diagram of the ToolStick University DC

Figure 7.1 University Daughter Card Functional Block diagram

S
iL

ab

C
80

51
F0

20

M
ic

ro
co

nt
ro

lle
r

Four LEDs P5 b7-4
4

P5 b3-0
4

Four Push Button Switches

AIN0.2
AIN0.3

DAC0

Potentiometer
Temperature Sensor

P4
8

DIP 8 Switches

DAC1

CP1-

CP1+

CP0-

CP0+

Chapter 7 ToolStick University Daughter Card 135

7.1 Peripheral Resources and Connections
The various sub-sections of the ToolStick university daughter card are
explained next.

LEDs

In most applications, several LEDs are required, often to depict port
status and program diagnostics. Thus four LEDs are provided on the
board, connected to the upper half of Port 5 (P5.4 – P5.7). The LEDs are
active high and when turned on, approximately 10mA flows through
them. Figure 7.2 shows the LED circuitry.

Figure 7.2 LED connections on the University Daughter Card

Pushbutton Switches

Pushbuttons and toggle switches are required in any micro-processor
development system for generating digital input signals. Four
Pushbuttons are provided on the daughter card; these are connected to
the lower half of Port 5 (P5.0 to P5.3). The pushbuttons are active low,
i.e. logic ‘0’ is generated at the port pin when the pushbutton is pressed.
Figure 7.3 shows the pushbutton circuitry.

136 Chapter 7 ToolStick University Daughter Card

Figure 7.3 Pushbutton connections on the University Daughter Card

Toggle Switches

To further increase the capabilities of the daughter card to provide digital
inputs, there are eight toggle switches on it. These are in the form of DIP
(Dual-In-Line package) micro-switches connected to Port 4. The toggle
switches are active low, i.e. logic ‘0’ is generated at the port pin when the
switch is on. Figure 7.4 shows the toggle switch circuitry.

Figure 7.4 Toggle switch connections on the University Daughter Card

Chapter 7 ToolStick University Daughter Card 137

Potentiometer

A potentiometer is used as a voltage divider. It allows the ADC to be
used with no danger of the input exceeding the maximum rated voltage.
The variable analog voltage (0 to 3.3V) from the potentiometer is
connected to the input of the 12-bit ADC0 on channel 2 (AIN0.2). Figure
7.5 shows the voltage divider circuitry using the potentiometer.

Figure 7.5 Voltage divider circuit using a potentiometer on the University Daughter Card

Temperature Sensor Input

A thermistor can be connected to J4 on the daughter card. The circuitry
for the thermistor is shown in Figure 7.6. The analog output of the circuit
is fed to the 12-bit ADC0 on channel 3 (AIN0.3).

Figure 7.6 Circuit for connecting a thermistor to the University Daughter Card

138 Chapter 7 ToolStick University Daughter Card

I/O Port Connections

Pin header connections are provided on the daughter card for external
connections to ports 0 to 2. These are on J1 to J3. Figure 7.7 show the
connection diagrams for the I/O ports.

Figure 7.7 Port I/O connections on the University Daughter Card

Analog Signal Connections

Pin header connections are provided on the daughter card for external
connections to comparator inputs and DAC outputs. These are on J5.
Figure 7.8 show the connection diagrams for the analog inputs and
outputs. For various experiments, the DAC outputs or analog voltages at
AIN0.2 (potentiometer) and AIN0.3 (thermistor) can be connected to the
comparator inputs.

Figure 7.8 Analog I/O connections on the University Daughter Card

Chapter 7 ToolStick University Daughter Card 139

7.2 Configuring the University Daughter Card
The following function shows how to configure the microcontroller ports,
given all the resources detailed in the previous section.

The entire Port 4 has to be set up for input operation as it is connected to
the 8 toggle switches. This is done by configuring its output mode to
open drain and writing a logic ‘1’ to all its pins.

The lower four pins of Port 5 also need to be set up for input operation as
they are connected to the four push button switches. This is done by
configuring the output mode of P5[3:0] to open drain and writing a logic
‘1’ to the associated pins.

The upper four pins of Port 5 need to be configured for output operation
as they are connected to the four LEDs. The output mode of P5[7:4] is
thus set to push-pull.

In the initialization function shown below, the weak pull-ups have been
disabled by programming the WEAKPUD bit (XBR2.7) to 1. The crossbar
is enabled by programming the XBARE bit (XBR2.6) to 1.

void Init_Port(void) //-- Configures the Crossbar & GPIO ports
{

XBR0 = 0x00;
 XBR1 = 0x00;
 XBR2 = 0xC0; //-- 11000000: Enable Crossbar and

 //-- disable weak pull-ups

 //-- Port 7-4 I/O Lines
 P74OUT = 0x08; // Output configuration for P4-7
 // (P5[7:4] Push Pull) - 4 LEDs
 // (P5[3:0] Open Drain) - 4 Push-Button Switches (input)
 // (P4 Open Drain) - 8 DIP Switches (input)

//-- Write a logic 1 to those pins which are to
//-- be used for input

 P5 |= 0x0F;
 P4 = 0xFF;
}

���������	�����������	����
��
�
�����������

���������	�����������

���������	�����������	����
��

���������	�����������	����

�
����������
��

������	�//------------------

----------------¶
void Init_ADC1(void)¶
{¶
REF0CN = 0x03; //-- Enable
internal bias generator and
// internal reference
buffer¶

// Select ADC1
reference from VREF1 pin
ADC1CF = 0x81; //-- SAR1
conversion clock=941KHz
// approx., Gain=1¶
AMX1SL = 0x00; //-- Select
AIN1.0 input¶
ADC1CN = 0x82; //-- enable
ADC1, Continuous Tracking
// Mode, Conversion
initiated on Timer ¶
// 3 overflow¶
}¶
//--------------------------

--------¶
¶
¶
//--------------------------

--------¶
// Interrupt Service Rout
¶
void Timer3_ISR (void)
interrupt 14¶
{¶
TMR3CN &= ~(0x80); //
clear TF3 flag¶
¶
//-- wait for ADC1
conversion to be over
while ((ADC1CN & 0x20) ==
0); //-- poll for AD1INT
ADC1_reading = ADC1;
read ADC1 data¶
ADC1CN &= 0xDF; //--
AD1INT¶
}¶
//--------------------------

140 Chapter 7 ToolStick University Daughter Card

7.3 Connecting the University DC to a PC
The university daughter card is connected to the personal computer
using the USB port through the ToolStick Base Adapter. Figure 7.9
shows the connection diagram. The connection between the daughter
card and the base adapter uses the Card Edge.

Figure 7.9 Connecting the University Daughter Card to a PC using a ToolStick Base

Adapter

The base adaptor provides a USB debug interface to a Windows PC and
the firmware for UART serial communication between the PC and the
Daughter Card. Figure 7.10 shows the ToolStick University Daughter
Card connected to the ToolStick Base Adapter.

Figure 7.10 University Daughter Card connected to the ToolStick Base Adapter

ToolStick Daughter Card

ToolStick Base Adapter

Chapter 7 ToolStick University Daughter Card 141

The Base Adapter may be connected directly to the USB port of the PC,
as shown in Figure 7.11 or it can be connected using the USB extension
cable as shown in Figure 7.12.

Figure 7.11 Base Adapter connected directly to the USB port of the PC

Figure 7.12 Base Adapter connected to PC using the USB extension cable

Debug Adapter Daughter Card

The ToolStick Base Adapter can be connected to the Debug Adapter
Daughter Card as shown in Figure 7.13 and Figure 7.14. This provides
the 10-pin interface so that the ToolStick Base Adapter can function as a

142 Chapter 7 ToolStick University Daughter Card

debug adapter for the standard SiLab microcontroller development
boards.

Figure 7.13 Using ToolStick Base Adapter and Debug Adapter Daughter Card

Figure 7.14 Using ToolStick Base Adapter to connect to a standard development board

7.4 Hardware Overview of ToolStick Base Adapter
Figure 7.15 shows the various hardware components of the ToolStick
Base Adapter.

Power LED: Indicates that the USB power is on.

Run/Stop LEDs: These LEDs indicate if the target MCU (on the
daughter card that is connected to the base adapter) is currently running
or halted.

SiLab MCU: This Microcontroller performs the USB debug adapter
functions and implements PC communication functions.

=

Chapter 7 ToolStick University Daughter Card 143

Socket Connector: This socket accepts a 14-pin card-edge connector.
The MCU daughter card or the Debug Adapter Debug Card may be
connected to this socket.

Figure 7.15 Hardware components of the ToolStick Base Adapter

7.5 Hardware Overview of ToolStick University
Daughter Card
Figure 7.16 shows the ToolStick University Daughter Card and the
following resources and connections.

• LEDs

• Pushbutton Switches

• Toggle Switches

• Potentiometer

• Temperature Sensor Input

• I/O Port Connections

• Analog Connections

Silicon Laboratories MCU
Performs USB debug adapter and
PC communication functions

Run/Stop LEDs
Indicate if target MCU is running or halted

Socket Connector
Accepts a 14-pin card-edge
connector

Power LED
Indicates USB Bus

144 Chapter 7 ToolStick University Daughter Card

Figure 7.16 Resources and connections on the ToolStick University Daughter Card

7.6 Starting a Project in SiLab IDE
In common with many Windows based software development
environments, the SiLab Integrated Development Environment (IDE)
uses a project file to specify the actions to be performed on the set of
files it is currently working with. With a simple project there will only be a
single file involved but larger projects quickly expand to a number of .c
source files and perhaps assembly files too. The project file stores other
information too, including the state of the IDE desktop.

A sensible approach is to start with an empty directory for a new project.
Using the menus: Project/New Project followed by
Project/Save Project As and navigating to your new directory results in a
workspace file (.wsp). Similarly, create a new .c file and save it as well.

Potentiometer Connection
for Thermistor

I/O Port Connections

Push Button Switches

LEDs

Toggle Switches

Analog
Connections

C8051F020
Target

Microcontroller

Power
LED

Chapter 7 ToolStick University Daughter Card 145

At this point you have a .wsp and a .c file in your directory, but the .c file
is not actually part of the project. Project/Add Files to Project will allow
you to add the file to the project.

You can now proceed to write your program. It can be compiled with F7,
downloaded with Alt-D, and run with F5. To combine the compile and
download steps go to Project/Target Build Configuration and check the
Enable automatic download/connect after build check box.

7.7 Blinking the LEDs on the Daughter Card Using
Software Delays
To come to grips with programming a new microcontroller, it is best to
get something working – the simpler the better. A good place to start is
blinking a LED. Using software delays, rather than an interrupt, is the
simplest approach, although it is generally a poor practice. The program
to do this is trivial but there are overheads involved in configuring the
SiLab C8051F020 which must be understood.

Because the MCU operates very fast it is necessary to slow it down if a
blinking LED is to be observed. The following program makes the 4
green LEDs (on P5.4 to P5.7) blink all together. It uses delay loops to
control the blinking on/off period. The internal oscillator at 8 MHz has
been used. The same delay functions will implement different amount of
delay of the clock speed is changed.

While software delays can be quite accurate, if calibrated, it is difficult to
do so and they loose any time which is taken by interrupts. They also tie
up the processor while running, so other tasks, such as reading the
keyboard or getting data from the serial buffer, may potentially be
ignored.

Whereas many C programs run for a time and then exit, a program in a
microcontroller normally runs forever. This can be seen in the program
where the main() function has a while loop that runs for ever (remember
that 1 is Boolean true, 0 is false).

146 Chapter 7 ToolStick University Daughter Card

//-- This program makes the 4 green LEDs (on P5.4 to P5.7) blink
//-- (all together). Uses delay loops to control the blinking
//-- (on/off) period. Uses internal oscillator at 8 MHz

#include <c8051f020.h> // SFR declarations

//--
// Function PROTOTYPES
//--
void init_Clock(void); // System clock initialisation
void init_Port(void); // general system initialization
void small_delay(char count); // small delay loop
void big_delay(char count); // big delay loop
void huge_delay(char count); // huge delay loop

void main(void)
{
 //-- disable watchdog timer
 WDTCN = 0xDE;
 WDTCN = 0xAD;

 init_Clock();
 init_Port();

 P5 = P5 & 0xFF; //-- turn ON the four LEDs

 while (1) //-- go on forever (endless loop)
 {
 huge_delay(20);
 P5 = P5 ^ 0xF0; //-- toggle the four LEDs using
 //-- EX-OR with '1'
 }
}

void init_Clock(void)
{
 //-- program the INTERNAL Oscillator Control Register

 OSCICN = 0x86; //-- 1000 0110b
 //-- Bit 7 : Missing Clock Detector Enabled (MSCLKE = 1)
 //-- Bit 3 : Uses Internal Osc as System Clock CLKSL = 0)
 //-- Bit 2 : Internal Osc. enabled (IOSCEN = 1)
 //-- Bit 1-0 : 8 MHz (IFCN1-IFCN0 set to 10)

 // OSCICN = 0x84; //-- 2 MHz
 // OSCICN = 0x85; //-- 4 MHz
 // OSCICN = 0x87; //-- 16 MHz

 while ((OSCICN & 0x10) == 0);//-- poll for IFRDY -> 1

}

Chapter 7 ToolStick University Daughter Card 147

void init_Port(void)
{
 //----- Configure the XBRn Registers
 XBR0 = 0x00;
 XBR1 = 0x00;
 XBR2 = 0x40;// Enable the crossbar, weak pull-ups enabled

 //-- Port configuration (0 = Open Drain, 1 = Push Pull)
 P0MDOUT = 0x00; // Output configuration for P0
 P1MDOUT = 0x00; // Output configuration for P1
 P2MDOUT = 0x00; // Output configuration for P2
 P3MDOUT = 0x00; // Output configuration for P3

 //-- Port 7-4 I/O Lines
 P74OUT = 0x08; // Output configuration for P4-7
 // (P5[7:4] Push Pull) - 4 LEDs
 // (P5[3:0] Open Drain) - 4 Push-Button Switches (input)
 // (P4 Open Drain) - 8 DIP Switches (input)

//-- Write a logic 1 to those pins which are to be used
//-- for input

 P5 |= 0x0F;
 P4 = 0xFF;
}

//===
// delay loops
//===
void small_delay(char count)
{
 while(count--);
}

void big_delay(char count)
{
 while(count--) small_delay(255);
}

void huge_delay(char count)
{
 while(count--) big_delay(255);
}

�������	�����
������� ������������ �����������	��	���� �
//--
void Init_ADC1(void)
{
 REF0CN = 0x03; //-- Enable internal bias generator and
// internal reference buffer
 // Select ADC1 reference from VREF1 pin
 ADC1CF = 0x81; //-- SAR1 conversion clock=941KHz
// approx., Gain=1
 AMX1SL = 0x00; //-- Select AIN1.0 input
 ADC1CN = 0x82; //-- enable ADC1, Continuous Tracking
// Mode, Conversion initiated on Timer
// 3 overflow
}
//--

//--
// Interrupt Service Routine

void Timer3_ISR (void) interrupt 14
{
 TMR3CN &= ~(0x80); //-- clear TF3 flag

 //-- wait for ADC1 conversion to be over
 while ((ADC1CN & 0x20) == 0); //-- poll for AD1INT-->1
 ADC1_reading = ADC1; //-- read ADC1 data
 ADC1CN &= 0xDF; //-- clear AD1INT
}
//--

