
Adaptive Emission Control of Freeway Traffic via
Compensation of Modeling Inconsistences
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Abstract—Nowadays when traffic jams and air pullution are
very common, controlling the emission rate of the exhaust
fumes is a significant task. Many difficulties make this problem
more sophisticated, for example the present emission models
sometimes need too many information so it is quite complex
to work with them. On the other hand, the underlaying physics
behind the hydrodynamic traffic models does not suggest unique
mathematical formulation so we need adaptive controllers that
iteratively improve the forecasts obtained by a rough initial model
without tuning the parameters of a particular mathematical
structure. In this paper a simple method is shown for determining
the stationary solutions obtained from a hydrodynamic model
for a realistic parameter range. The method is based on Robust
Fixed Point Transformations (RFPT)-based adaptive control that
needs only the main factors in the emission: the traffic density
and velocity. For controlling it applies electric road signs for the
prescribed velocities and allowed ingress rate from the ramp in
the preceding sector. This is a new area for the RFPT, but as the
simulations show it is successfully applyable to the problem.

I. INTRODUCTION

The relationship between freeway traffic and health has been
investigated for a long time, e.g. [1]. An important point of
view is the emission rate of exhaust fumes, because under
various meteorological conditions different emission rates can
dissolve in the environment. The chemical composition of
the exhaust depends on the actual traffic conditions (road
slope, tyre friction, deceleration/acceleration and velocity), the
particular properties of the various vehicles (engine types,
their gearing system [2], etc.). For modeling these effects
quite complex models were developed (e.g. [3], [4], [5], [6])
but their practical use is limited because normally the traffic
control systems do not have enough information they need.

Development of proper models for the road traffic is also
an interesting question. Certain investigations have revealed
fractional order dynamics in the nature of freeway traffic
[7]. Several models can be regarded as some mathematical
approximations of continuum mechanical ones that use integer
order partial derivatives (e.g. [8], [9], [10], [11], [12], [13],
[14]) in which the time is kept as continuous variable but the

space is treated as a discretized grid. This discretization can be
realized by the use of various numerical approximations of the
gradient operator that lead to models of various complexity.
Either one-sided or centralized differences can be applied
without deeper physical substantiation. Since the underlaying
physics behind the hydrodynamic traffic models does not
suggest unique mathematical formulation we need adaptive
controllers that iteratively improve the forecasts obtained by
a rough initial model without tuning the parameters of a
particular mathematical structure.

For similar purposes various Model Reference Adaptive
Controllers (MRAC) can be found in the literature applied
in robotics (e.g. [15], [16], [17], [18]) that use Lyapunov’s
“direct” method (e.g. [19], [20]) which can be a difficult
technique that requires good mathematical skills in some cases.
Alternative, also effective techniques generating convergent
sequences by the use of contractive maps in iterative learning
control were also published (e.g. [21], [22], [23], [24], which
is called Robust Fixed Point Transformations (RFPT).

In this paper a new approach is shown for determining
the stationary solutions of emission control obtained from
a hydrodynamic model for a realistic parameter range. The
method is based on RFPT that needs only the main factors in
the emission: the traffic density and velocity. For controlling
it applies electric road signs for the prescribed velocities and
allowed ingress rate from the ramp in the preceding sector.
The method is less complex compared to the ones mentioned
above. This is a new area for the RFPT, but as the simulations
show it is successfully applyable to the problem.

The paper is organized as follows: the hydrodynamic models
of freeway traffic are presented in Section II. The stationary
solutions of the dynamic model under the particular boundary
conditions applied are shown in III. The simulation results are
detailed ins Section IV. Section V contains the discussion of
the results and proposes further researches in this direction.
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II. HYDRODYNAMIC MODELS OF FREEWAY TRAFFIC

For our investigations, we use the model shown in Fig [?].
For simplicity let’s assume a one dimensional state varible
which has six segments, from 0 to 5. The road segments have
equal lengths L. Segments 0 and 5 represent the boundary
conditions determining the propagation of the state variables
of segments 1 to 4 by keeping time as continuous variable,
and applies discretized approximation of the –in this case
one dimensional– space variable. The state variables are
the vehicle density ρ (i.e. the number of vehicles over road
segments of unit length), and the velocity of traffic v of a
compressible fluid model. The quantity ρv (1/s) denotes the
traffic current density by the use of which conservation of the
vehicles can be described by Eqs (2)-(5).

v̇i =
∂vi
∂t

+
3∑
s=1

∂vi
∂xs

ẋs =
vi
∂t

+
3∑
s=1

∂vi
∂xs

vs(x, t) (1)

ρ̇1 =
q0 − ρ1v1

Lλ
(2)

ρ̇2 =
ρ1v1 − ρ2v2 + r2

Lλ
(3)

ρ̇3 =
ρ2v2 − ρ3v3

Lλ
(4)

ρ̇4 =
ρ3v3 − ρ4v4

Lλ
(5)

v̇2 =
V (ρ2)− v2

τ
+
v2(v1 − v3)

2L
− (6)

− η

τ2L

ρ3 − ρ1
ρ2 + κ

− δ

L

r2v2
ρ2 + κ

v̇1 =
V (ρ1)− v1

τ
+
v1(v0 − v2)

2L
− η

τ2L

ρ2 − ρ0
ρ1 + κ

(7)

v̇3 =
V (ρ3)− v3

τ
+
v3(v2 − v4)

2L
− η

τ2L

ρ4 − ρ2
ρ3 + κ

(8)

v̇4 =
V (ρ4)− v4

τ
+
v4(v3 − v5)

2L
− η

τ2L

ρ5 − ρ3
ρ4 + κ

(9)

According to Fig. 1 these equations apply the finest avail-
able spatial resolution and they can be regarded as an integral
form in the Gauss Equation that relates the time derivative
of the number of vehicles within a fixed road segment with
the ingress and egress of traffic flow at the boundaries of this
segment. The dynamic behavior of this system is described by
Eqs (7)-(9) in which for the V (ρ) functions various sugges-
tions can be found in the literature as e.g. the Greenshields
and the Papageorgiou models (10).

V (ρ) := vfree

(
1− ρ

2ρcr

)
or

V (ρ) := vfree exp

(
− 1
b

[
ρ
ρcr

]b) (10)

in which the first relationship established by Greenshields
may provide even negative velocities that are not allowed
under normal conditions in a real traffic, while the second
one, the Papageorgiou model always results in interpretable

nonnegative values. On this reason in the present paper we
use this latter approach.

It worths noting that Eqs. (7)-(9) cannot unambiguously
derived from the fluid mechanical model. For instance, in case
of a 3D traffic model (that definitely has sense for aircrafts
and submarines), be the use of the 3D tensor components of
the velocity field of motion, vi(x, t) the acceleration along
a flowpath in (1) contains the gradient of this field that is
approximated by central differences in (7)-(9).

However, we also could use one-sided differences for the
approximation of the gradient ∂vi

∂xs
as e.g. in the following

equations. The complexity of the model using central differ-
ences evidently exceeds that of the one-sided models.

v̇1 =
V (ρ1)− v1

τ
+
v1(v0 − v1)

L
− η

τL

ρ2 − ρ1
ρ1 + κ

(11)

v̇2 =
V (ρ2)− v2

τ
+
v2(v1 − v2)

L
− (12)

− η

τL

ρ3 − ρ2
ρ2 + κ

− δ

L

r2v2
ρ2 + κ

v̇3 =
V (ρ3)− v3

τ
+
v3(v2 − v3)

L
− η

τL

ρ4 − ρ3
ρ3 + κ

. (13)
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Fig. 1. The discretized hydrodynamic model of freeway traffic.

If the additional ingress rate from the ramp r2 is applied
at section 2 and we apply central differences the appropriate
dynamic model is given by Eqs (2)-(9). If we use electronically
controlled road signs the quantities ρ0, v0 (consequently q0 :=
ρ0v0), v4 and v5 can be set as constant boundary conditions
which together with Eq (9) with v̇4 = 0 immediately determine
the density in segment 5, ρ5. Therefore the state variables
remain only ρ1, ρ2, ρ3, ρ4, v1, v2, and v3 for which we have
coupled first order nonlinear differential equations.

We note that these equations describe a strongly “underac-
tuated” system: we have only one time-varying control signal
r2 that influences the propagation of seven state variables.
Therefore we can precisely control only one of these variables
or a well defined complex expression calculated from them,
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or we can apply a kind of optimal controller in which a goal
or cost function may describe weighted significance of the
precision of controlling the individual variables so resolving
the essentially contradiction-burdened task.

III. THE IDEA OF THE ADAPTIVE CONTROLLER USING
QUASI-STATIONARY APPROACH

Further significant observation concerns the stability of the
stationary solutions of these differential equations. Assume
that for fixed r̂2 stationary solutions (i.e. ρ̂1, ρ̂2, ρ̂3, ρ̂4, v̂1,
v̂2, and v̂3) for which ˙̂ρ1 = 0, ˙̂ρ2 = 0, ˙̂ρ3 = 0, ˙̂ρ4 = 0, ˙̂v1 = 0,
˙̂v2 = 0, and ˙̂v3 = 0, but these solutions are unstable. Such
a dynamic system could require very fast feedback signal in
r2 to stabilize the stationary solutions that would be a very
difficult, but its practical implementation would be dubious.
But if the stationary solutions are stable, the control task can be
approached in a far simpler and far more easily implementable
manner. In this case small steps in the control signal can
result in small modifications of the controlled quantities that
automatically set themselves following a shorter or longer
transient session. In this case the need for really dynamic
control ceases. The system model can simply be used for
determining the necessary small steps in r2 and instead of
fast dynamic feedback a simple iterative controller can be
designed for the compensation of the modeling errors. This
approach is traditional e.g. in Thermodynamics and Chemistry
when the states of the thermal equilibrium are stable or at
least metastable, i.e. they show stability at least against small
perturbations. The quasi-stationary thermodynamic processes
model the sate propagation as a sequence of stationary states
(e.g. [26], [27]. The stationary solutions of certain multiple-
compartment process models of the human glucose-insulin
system (e.g. [29], [28]) also show stability that eases their
control. In the next section the stationary solution of our model
under the given boundary conditions are investigated.

A. The stationary solutions of the dynamic model

Under the boundary conditions ρ̂0 = const., v̂0 = const.
(consequently q̂0 := ρ̂0v̂0=const.), v̂4 = const. and v̂5 =
const. for constant control signal r̂2 = const. the dynamic
equations take the form of

0 =
q̂0 − ρ̂1v̂1

Lλ
(14)

0 =
ρ̂1v̂1 − ρ̂2v̂2 + r̂2

Lλ
(15)

0 =
ρ̂2v̂2 − ρ̂3v̂3

Lλ
(16)

0 =
ρ̂3v̂3 − ρ̂4v̂4

Lλ
(17)

0 =
V (ρ̂1)− v̂1

τ
+
v̂1(v̂0 − v̂2)

2L
− η

τ2L

ρ̂2 − ρ̂0
ρ̂1 + κ

(18)

0 =
V (ρ̂2)− v̂2

τ
+
v̂2(v̂1 − v̂3)

2L
− η

τ2L

ρ̂3 − ρ̂1
ρ̂2 + κ

(19)

− δ

L

r̂2v̂2
ρ̂2 + κ

0 =
V (ρ̂3)− v̂3

τ
+
v̂3(v̂2 − v̂4)

2L
− η

τ2L

ρ̂4 − ρ̂2
ρ̂3 + κ

(20)

with the explicit equation for ρ̂5 as

ρ̂5 = ρ̂3 − τ2L(ρ̂4+κ)
η ×

[
V (ρ̂4)−v̂4

τ + v̂4(v̂3−v̂5)
2L

]
. (21)

Due to nonlinearities in Eqs (14)-(20) the stationary solu-
tions can be found by some numerical technique. Our solution
is detailed in the next subsection.

B. Determination of the stationary solutions

For reducing complexity, we use a simple method. The
occurrence of (ρ̂i+κ) in the denominators may cause division
by zero in numerical algorithms, so in the 1st step such
divisions were eliminated via multiplication in Eqs 14-20
resulting the equations

0 = f4 := q̂0 − ρ̂1v̂1 (22)
0 = f5 := ρ̂1v̂1 − ρ̂2v̂2 + r̂2 (23)
0 = f6 := ρ̂2v̂2 − ρ̂3v̂3 (24)
0 = f7 := ρ̂3v̂3 − ρ̂4v̂4 (25)
0 = f1 := 2L(ρ̂1κ)[V (ρ̂1)− v̂1] + (26)

+ τ(ρ̂1 + κ)v̂1(v̂0 − v̂2)− η(ρ̂2 − ρ̂0)

0 = f2 := 2L(ρ̂2 + κ)[V (ρ̂2)− v̂2] + (27)
+ τ(ρ̂2 + κ)v̂2(v̂1 − v̂3)− η(ρ̂3 − ρ̂1)−
− 2τδr̂2v̂2

0 = f3 := 2L(ρ̂3 + κ)[V (ρ̂3)− v̂3] + (28)
+ τ(ρ̂3 + κ)v̂3(v̂2 − v̂4)− η(ρ̂4 − ρ̂2).

A formal possibility is to consider Eqs (22)-(28) as subjects
of some optimization task. According to the classification of
the optimization tasks published in [30] our task corresponds
to the most general case in which both the goal function
as well as the possible constraints are nonlinear. However,
the number of the independent variables is not too big. With
the help of MS Excel’s Solver it can be proved that there is
dependence of the coefficients of the r̂2-based polynomial on
q̂0.

In the next section the main exhaust fume emission factors
are briefly considered.

C. Introduction of the Emission Factor

For calculating the main factors (the emission rates), it is
assumed that at high velocities in the freeway the most signif-
icant dissipative factor is the drag force generated by eddying
air that is proportional to the square of the velocity: F = Cv2

in which the C coefficient depends on the particular vehicles.
At velocity v the power consumption of this drag force is
Fv = Cv3 which roughly determines its fuel consumption.
On a road segment of length L and vehicle density ρ in a given
moment Lρ vehicles produces LCρv3 power consumption
which roughly determines the emission rate of exhaust fume
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on this segment (C denotes some “average” for the various
vehicles present on the segment). It is evident that it is very
difficult to obtain information on C, however, the emission
for any car still strongly depends on the factor Ef := ρv3

that easily and quickly can be measured by cheap and simple
inductive loop detectors (e.g. [31], [32]). On this reason we
refer to this quantity as the “emission factor” which in the
case of stationary flow in segment 3 can also be expressed as
Ef = (q̂0 + r̂2)v

2
3 since ρ̂3v̂3 = q̂0 + r̂2. Independently of the

actual (unknown) value of C this factor must be decreased if
the contamination of air is too high, or it can be increased
if the actual concentration of the exhaust in the air is under
some prescribed threshold. On this reason we made direct
polynomial fitting for Ef , too.

To sum up the stationary behavior of the system in the given
parameter range can well be approximated by a few simple
matrices containing the coefficients of the polynomial fitting.
Simultaneous measurement of ρ̂3 and v̂3 guarantees not having
drastic estimation errors.

The last question is the stability of the stationary states.
Since the suggested method needs continuous observations in
general it cannot promise “asymptotic stability” due to the
principle of causality (any correction is possible only after
the observation), but as the investigations revealed, it can
guarantee stability.

IV. SIMULATION RESULTS

For the adaptive control of the emission factor at road
segment 3 the 3rd order polynomial fitting of Ef is directly
calculated. Utilizing the fact that it is found to be monotone
increasing function of r̂2 for arbitrary positive q̂0 investigated
a simple function is written in SCILAB to find a model-
based r̂Des2 value for a prescribed nominal ÊNomf ≡ ÊDesf

emission factor. The non-adaptive controller immediately in-
troduced this value to its available system model. The adaptive
controller introduced this corrected value into function G of
equation ([24], [25]) to calculate the deformed “Required”
input into the rough system model. In the simulations the
realistic δtsampling = 0.028h ≈ 100.8 s value is chosen. The
control parameters are Kctrl = −1e10, Actrl = 5e− 12, and
Bctrl = 1. The allowed maximum discrete time step on the
integrator was set to δtsampling/50.

Simulation were made for the exact and the approximate
models. The approximate model parameters were set as fol-
lows: the values marked by the tilde symbol ()̃ represent
the exact model values, and the original parameter set now
corresponds to the rough approximation of the real data:
ṽfree = 1.20vfree, b̃ = 1.2b, L̃ = L, ρ̃cr = 1.2ρcr, τ̃ = 1.2τ ,
η̃ = 1.2η, κ̃ = 1.2κ, δ̃ = 1.2δ, and λ̃ = λ. The trivially not
available parameters’ values were overestimated by 20%.

In the first set the applicability of the polynomially fitted
exact model was checked for use in a common non-adaptive
controller. In the simulations q̂0 was varied in drastic steps
while ENomf varied continuously. Figure 2 reveals that the
fitted stationary approximation is in harmony with the output
of the dynamic model. It can be observed that the sign of the
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Fig. 3. Emission factor tracking of the adaptive controller using the exact
model parameters of the controlled system: ENom

f vs. Ef , in km2/h3 units.

tracking error in the great majority of the simulation time is
identical, i.e. the approximation is a little bit biased.

In the next step it was investigated to what extent disturbs
the adaptive controller the use of the exact model. Figure
4 well demonstrates that instead of the bias, the adaptive
controller produces an error that fluctuates around zero.

In the next step the operation of the adaptive controller
was investigated for the case in which the polynomially fitted
stationary values originate from the approximate dynamic
model. The results are given in Figs. 4.

In the above simulations can well be seen that the sharp
jumps in q̂0 generate jumps in the solutions. In the next
investigations the variation of q̂0 was made continuous and
smooth. The non-adaptive controller works with a huge error
that means that the Ef very drastically depends on the model
parameters that were modified to the tune of 20% only (Fig. 5).

The adaptive controller (results given in Fig. 6) yields
precise tracking without sharp jumps.
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In the above simulations the cycle time of the controller
was very big (≈ 100 s). In the practice in urban traffic the
available time for crossing a street used to be about 10 s, so
the best accuracy can be expected to this nice sampling time.
According to Fig. 7 really very nice tracking precision can be
achieved.

V. CONCLUSIONS

In this paper a new adaptive emission controller is shown
and compared to a nonadaptive one. Its simple structure
ensures low complexity. The adaptive controller that is based
on the simple 3rd order polynomial approach of the quasi-
stationary states of a given model and the RFPT transfor-
mations seems to be a prospective solution. It applies the
ingress rate from the ramp in the preceding road segment as
a control signal, and requires the measurement of the traffic
velocity and vehicle density in the controlled segment. The
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Fig. 6. Emission factor tracking of the adaptive controller using the
approximate model parameters of the controlled system for smooth q0 ingress
rate: ENom

f :-black, Ef :-blue lines in km2/h3 units in the upper chart; v1:-
black, v2:-blue, v3:-green lines in km/h units, ρ1:-black, ρ2:-blue, ρ3:-green,
ρ4:-red lines in 1/km units in the lower chart, time is given in h units.

adaptive controller applied iteratively learns by utilizing the
recent value of the control signal and the recent observed
behavior of the controlled system. The here applied “prelimi-
nary” or experimental version must be completed with safety
limitations that prevent negative r̂2 at the ingress side that
cannot be realized in an actual road. In similar manner, the
occurrence of negative velocities has to be excluded on the
same reason. From the theory of partial differential equations
it is well known that the boundary conditions very significantly
influence the behavior of the solutions. In the here considered
example we applied a well defined boundary condition by
prescribing constant ρ0, v0, and v4 = v5 values. For practical
applications fitted polynomial packages could be prepared
for several reasonable ρ0, v0, and v4 = v5 combinations
depending on some “typical” traffic situations.
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