
 

 

 

  

Abstract— A problem of optimal control of traffic 

flows in the urban network is considered. A derivation of the 

mathematical model of control by the traffic lights at 

intersections is given. The mathematical model of control object 

is obtained using the controlled networks theory. This model is 

a system of nonlinear finite-difference equations. To present a 

large scale road networks the model contains the connection 

matrices. The connection matrices describe connections between 

input and output roads in subnetworks. These matrices allow 

considering the influence of traffic flows in one subnetwork the 

ones in other subnetwork.  

The traffic flow control is done by the coordination of 

active phases of traffic lights. The optimal control problem is to 

minimize the difference between the total input flow and total 

output flow for all subnetworks. To solve the optimal control 

synthesis problem we use a logical network operator method. 

An example of model for the network of three subnetworks is 

given.  

I. INTRODUCTION 

HE influence of active phases of traffic lights at 

neighboring intersections is significant when the road 

network is busy. If the active phases are not properly 

coordinated then the traffic jams occur, and as a result the 

intersections can no longer be controlled. Thus the effective 

traffic flow control problem can be solved by the active 

phases coordination.  

The problem of active phase coordination for the traffic 

lights at several intersections on different roads is still 

unsolved. One of the reasons for it is the absence of adequate 

mathematical models of traffic flow control by the traffic 

lights. Nowadays it is considered that the hydraulic models 

are the most appropriate ones [1-5]. These models are the 

systems of differential equations in partial derivatives. We 

should also note that these models do not explicitly include 

the traffic light control and are quite complex for 

optimization.  

Other models [6] do not describe direct dependence of 

flow parameters from the duration of active phases. For 

example, in model [6] the density of traffic flow is 
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controlled. The model describes large scale networks and 

determines the change of flow parameters by nonlinear 

system in continuous and discrete time. This system does not 

describe the road configuration that depends on the active 

phases at intersections.  

In this paper a derivation of traffic flow control 

mathematical model on the basis of the controlled networks 

theory is given [7-9]. The controlled networks are presented 

as graphs of flexible configurations. The obtained 

mathematical model is a system of nonlinear finite-difference 

equations.  

In works [7-9] to derive a model it is necessary to use a 

graph of road network. When considering a large scale 

network we obtain a large scale graph that leads to 

computational complexity. In this work we propose an 

improved approach. In the new model a large scale network 

is presented as several connected subnetworks. Each 

subnetwork is described by the graph of smaller dimension. 

The optimal control problem is stated for this system. To 

solve the problem of control synthesis we control the 

durations of active phases of traffic lights. As a result we 

obtain the dependence of control from the traffic flow state. 

An optimization criterion is the difference between the flows 

on the input and output roads.  

II. MATHEMATICAL MODEL OF TRAFFIC FLOWS 

To construct a mathematical model of traffic flow control 

we use a directed graph of flexible structure. The nodes of 

the graph are the parts of the road between intersections. The 

edges of the graph are maneuvers between parts of the road. 

Thus we obtain a directed graph of the road network. 

Let the network consists of M  intersections and L  parts 

of the road. Maneuvers are performed at intersections. The 

active phases of traffic lights at intersections prohibit certain 

maneuvers and each state of traffic lights determines a part 

of the graph of the road network. As a result we obtain a 

graph of flexible configuration. To present the graph we use 

the following matrices: 

- an adjacency matrix of basis network graph  

[ ]ija=A , { }1,0∈ija , Lji ,1, = ;    (1) 

- a capacity matrix  

[ ]ijb=B , ∈ijb { }0
1 ∪+R ,       (2) 

where ijb  estimates the flow from road i  to road j  for 

some time interval;  
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- a control matrix 

[ ]ijc=C , { }Mcij ,,1�∈ ,      (3) 

where ijc  is a number of the intersection at which maneuver 

from road i  to road j  is performed;  

- a distribution matrix 

[ ]ijd=D , [ ]1,0∈ijd ,       (4) 

where ijd  indicates the part of the traffic flow at road i  and 

performs maneuver to road j , for all parts of the road (5) 

should be satisfied  

1

1

=�
=

L

j

ijd , Li ,1= ;      (5) 

- an allowable phase matrix 

[ ]ijF=F , Lji ,1, = , ( ){ }
ijcijkijij ff ,,F 1 �= , 

�
�
�

�
�
�∈ +

ijcijk uf ,0 , ( )ijck≤1 ,       (6) 

where 
+

ijc
u  is a maximal number of active phase at 

intersection ijc , ( )ijck  is a maximal quantity of traffic light 

phases that permits maneuver from road i  to road j  at 

intersection ijc , ijF  is a set of numbers of the phases that 

permit maneuver from road i  to road j . All matrices have 

identical structure: 0>ijb , 0>ijc , 0>ijd , ∅≠ijF , if 

1=ija , otherwise 0=ijb , 0=ijc , 0=ijd , 0F =ij . 

To describe the flexibility of the network configuration we 

introduce the control vector  

[ ]TMuu �1=u , { }+∈ ii uu ,,0 � ,   (7) 

where iu  is a number of the phase of traffic light at 

intersection i , 
+
iu  is a maximal number of active phase at 

intersection i , Mi ,1= . 

The change of network configuration is described by the 

configuration matrix that is also an adjacency matrix of a 

partial subgraph  

( ) ( )[ ]uaij=uA , 

( ) { }
��

�
�
� ∈=

=
otherwise  ,0

F,1if  ,1 ijcij
ij

ij
ua

ua .  (8) 

A configuration matrix influences the structures of all 

other matrices.  

To describe the parameters of the traffic flow let us 

introduce a time interval t∆ . We assume that the durations 

of all phases are estimated in integer number t∆ . We also 

assume that all traffic lights are synchronized so that the 

count of integer number of time intervals for all traffic lights 

in the network is done simultaneously. To obtain the 

quantitative characteristics of the traffic flow for each part of 

the road we use a flow vector 

( ) ( ) ( )[ ]TkLkk txtxt �1=x ,     (9) 

where ( )kj tx  is a number of cars on the road j  at time kt , 

( ) Ljtx ij ,1,1 =∈ R , Nk ,0= , N  is a number of control 

timing periods. 

Further on rewrite  

( ) ( )kxtx jkj = .        (10) 

Traffic flow ( )kx  depends on the road network 

configuration and the values of flow vector at the previous 

moment of time ( )1−kx . 

Suppose that all cars perform maneuvers at one timing 

period simultaneously. Maneuvers are performed in two 

steps. At the first step the cars leave the part of the road 

where they have been to perform a maneuver. At the second 

step they finish the maneuver and go to other roads. 

At the first step the number of cars is decreased by the 

number of cars that performed the maneuver as  

( )
�
�
�

�
�
�

	



�
�


�
−′′∆	




�
�


�
−′∆−−=	




�
�


�
−

2

1
,

2

1
min1

2

1
kkkk xxxx , (11) 

where 	



�
�


�
−′∆

2

1
kx  is a number of cars that needs to perform 

a maneuver, 	



�
�


�
−′′∆

2

1
kx  is a number of cars that can 

perform the maneuvers for one timing period according to 

the capacity of the road, 

( ) ( )( )( T
Lkk 1xx 12/1 −=−′∆ � D � ( )( ) Lk 1uA ,  (12) 

( ) =−′′∆ 2/1kx ( )( )( kuA � ) L1B ,   (13) 

[ ]
���

�

L

T
L 11=1 , � is an Hadamard product of matrices, 

( ) ( ) ( )[ ]TL kxkxk 2/12/12/1 1 −−=− �x , 

( ) [ ] ,1

T

Lxxk ′′∆′′∆=′′∆ �x  ( ) [ ]TLxxk ′∆′∆=′∆ �1x . 

Present (11) as 

( ) ( )−−=− 12/1 kk xx  

( )( ( ) ( )( )) ,2/12/12/1 −′′∆−−′∆−−′∆− kkk xxx �  

where 

�
�
� >−

=−
othewise. , 0

,  if  , baba
ba �  

At the second step the change of the traffic flow is 

described as  

( ) ( ) ( ) ( ){ }kkkk xxxx ′′∆′∆+−= ,min2/1 ,  (14) 

or 

( ) ( ) ( ) ( ) ( )( )kkkkk xxxxx ′′∆−′∆−′∆+−= �2/1 , (15) 

where  

( ) ( )( )( T
Lkk 1xx 1−=′∆ � D � ( )( ) L

T
k 1uA ,  (16) 

( ) =′′∆ kx ( )( )( kuA � ) L
T

1B .  (17) 
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As a result we obtain the following model of traffic flow 

control  

( ) ( ) ( )( )( T
Lkkk 1xxx 11 −−−= � ( )( )kuA � −D  

( )(( )T
Lk 1x 1−− � ( )( )kuA � −�D ( )( )kuA � )) +L1B

)) ++ L1B ( )( )( T
Lk 1x 1− � ( )( )kuA � −D  

( )( )( T
Lk 1x 1−− � ( )( )kuA � −�D  

( )( )kuA−� � )) ( )kL
T

�1B + ,   (18) 

where ( ) ( ) ( )[ ]TL kkk δδ= �1� , ( )kiδ  is the value of input 

flow at road i , Li ,1= , depending from some random 

factor. 

Consider a large road network of K  subnetworks. The 

models of subnetworks are presented as: 

( )( )( )Klk
lllll ,1 :,,,, =FDCBuA . 

To connect the models of all subnetworks let us introduce 

a connection matrix for each subnetwork 

[ ]l
ji

l r ,=R , l
ni 1 ,1= , Kj  ,1= , Kl  ,1= ,    (19) 

where l
jir ,  is an index of element in the input roads vector  

for the road j , l
n1  is a number of output roads in the 

subnetwork l . 

For each part of the road the model should include 

vectors of input and output roads.  
T

l

n

ll
l

vv �
�

�
�
�

�
=

0
1 �v ,       (20) 

T
l

n

ll
l

ww �
�

�
�
�

�
=

1
1 �w ,      (21) 

where l
iv  is an index of an input road in subnetwork l , l

iw  

is an index of an output road in subnetwork l , ln0  is a 

number of input roads in subnetwork l . 

Using connection matrices we can simulate the flow 

dynamics in all subnetworks simultaneously. At each time 

interval t∆  we recalculate the flow vector in accordance 

with connection matrix 

0, ≠γ=∀ l
jir , ( ) ( )kxkx lj

βα = ,    (22) 

where 
l

ni 1 ,1= , Kj  ,1= , Kl  ,1= , 
j

vγ=α , l
iw=β . 

III. THE PROBLEM OF OPTIMAL CONTROL OF TRAFFIC 

FLOWS 

The traffic flow control is performed by the change of 

active phase durations at controlled intersections in the 

considered network. It should be taken into consideration 

that the phases are switched in the certain order, and the 

duration of each phase is limited. A phase duration can be 

estimated in the number of time intervals t∆ . Let us 

introduce a vector of sets of minimal phase durations 

�
�
�
�
�

�

�

�
�
�
�
�

�

�
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�

=

+

+

MuMM

u

qq

qq

,1,

,11,1

,,

,,

Q
1

�

�

�

,      (23) 

where ijq ,  is a duration of active phase i  at intersection j , 

+= iui ,1 , Mj ,1= . 

Suppose that at the moment k  the phase i  is active at 

intersection j , then  

( ) iku j = .         (24) 

A phase switch condition is formulated as  

( )
( ) ( )

( )
,

1mod1 if,0

1  if  ,11 ,

��

�
�
�

+−=

<−+−
= +

j

ijjj
j

uii

qksks
ks . (25) 

where ( )ks j  is a duration of active phase ( )kui j=  at the 

moment k  at intersection j .  

To solve the optimal control problem for the traffic flows 

it is necessary to calculate the active phases durations of the 

traffic lights at intersections 

Mjuiqqq jijijij ,1,,1,,,, ==≤≤ ++− ,   (26) 

where −
ijq ,  and +

ijq ,  are given. 

The control should minimize the functional 

( ) ( ) min

21

1 →−= ��
∈∈ Ij

j

Ii

i NxNxJ ,    (27) 

where 1I  is a set of input roads numbers, 2I  is a set of 

output roads numbers. 

All values of flows should be constrained by 

( ) NkLixkx ii ,1,,1, ==≤ + .     (28) 

Let us add the constraints to the functional  

( ) ( )+−= ��
∈∈ 21

1

Ij

j

Ii

i NxNxJ  

( ) ( )
min11

1 1

→
	
	




�

�
�



�
−+

	
	




�

�
�



�
−+ ��

= =

+
++

N

k

L

i

i

i

i

i

i x
x

kx

x

kx
p ,  (29) 

where p  is a penalty coefficient. 

In our case (29) allows coping with the input and output 

roads where the number of cars is not limited. If the number 

of cars on the road is limited then 0≥+
ix . If the number of 

cars does not exceed limitation ( ) +≤ ii xkx , then  

( ) ( )
011 =−+

	
	




�

�
�



�
−

++
i

i

i

i

x

kx

x

kx
.    (30) 

If the limitation is exceeded then 

( ) ( )
011 >−+

	
	




�

�
�



�
−

++
i

i

i

i

x

kx

x

kx
.    (31) 
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For the roads without limitations we have 1−=+
ix . In this 

case for any ( )kxi  we get (30).  

Usually input and output roads have no limitations. 

According to (29) we assume  

1−=+
ix , if 21 IIi ∪∈ or ∞=+

ix .    (32) 

IV. THE SYNTHESIS OF INTELLIGENT CONTROL 

To solve the problem of control synthesis it is necessary to 

find the dependence between the active phase durations and 

the number of cars on the roads 

( )xjiji gq ,, = , += iuj ,1 , Mi ,1= ,   (33) 

where ( )xjig ,  is a multidimensional function that describes 

dependence between the flow state on all roads and duration 

of phase j  at intersection i . 

 To solve the control synthesis problem we use a network 

operator method [10, 11]. The method allows searching the 

structure and parameters of function by genetic algorithm. 

The structure of function is presented as a graph. The nodes 

and edges of the graph correspond to given sets of binary 

and unary operations.  

In our case we are more interested in the value that shows 

how occupied the road is rather than in the absolute value of 

flow x  in it. We can estimate the occupancy of the road by 

discrete values from 0 to +z . To estimate the traffic flows 

let us introduce an integer grid 

{ }+= z,,1,0Z � .        (34) 

 To estimate the flows on internal roads we take into 

consideration the limitations on these roads. The more the 

value 
+
i

i

x

x
, the more is its estimation by the grid (34).  

To avoid having too long phase durations let us introduce 

an integer grid for phases durations from 0 to +
y  

{ }+= y,,1,0Y � .        (35) 

 To obtain a phase duration we use a given increment 

jiy ,∆ . 

 The phase duration is found from  

ijijijij qyqq ,,,, ∆+= − ,      (36) 

where Y, ∈jiy . 

 Thus to solve the control synthesis problem it is necessary 

to determine the discrete value of phase duration by the 

discrete value of flow. As a result we obtain a k -valued 

function 

( )zY G=  ,         (37) 

where [ ]jiy ,=Y , Y, ∈jiy , Mi ,1= , += iuj ,1 , 

[ ]TLzzz �1= , Z∈kz , Lk ,1= . 

To solve the problem of control system synthesis namely 

finding ( )zG  we use the logical network operator method.  

V. THE LOGICAL NETWORK OPERATOR METHOD 

Network operator method was developed for the synthesis 

of control systems [10, 11]. The network operator allows to 

describe mathematical expression in a form of directed 

graph. The edges of the graph relate to unary operations. The 

nodes of the graph relate to binary operations. The source 

nodes relate to the arguments of the mathematical 

expressions. The solution of problem is searched with the 

help of genetic algorithm. 

The method of logical network operator was developed 

for the synthesis problem of intelligent control [9, 12]. 

The method of logical network operator uses unary and 

binary operations of multi-valued logic 

( ) ( )( )zzO 811 ,, ϕϕ= � ,       (38) 

( ) ( )( )zzzzO ′′′ω′′′ω= ,,,, 302 � ,     (39) 

where 

( ) ( ) ( ){ }++ ′′′=′′′ω zz,zzzz   mod  modmax,0 , 

( ) ( ) ( ){ }++ ′′′=′′′ω zz,zzzz   mod  modmin,1 , 

( ) ( )( )+′′+′=′′′ω zzzzz mod,2 , 

( ) ( )( )+′′⋅′=′′′ω zzzzz mod,3 , 

( ) ( )+=ϕ zzz  mod1 , ( ) ( ) ( )++=ϕ zzz   mod12 ,  

( ) ( )( )
�
�
� >−=ϕ

+

otherwise,  - 0

 ,0 if  ,mod1
3

zzzz  

( ) ( )++ −−=ϕ zzzz   mod14 ,  

( )
( )( )�

�
� <

=ϕ
++

+

otherwise,  -  mod2-1-

 ,2 if  ,2
5

zzz

zzz
z , 

( )
( )( )�

�
� <

=ϕ
++

+

otherwise,  -  mod3-1-

 ,3 if  ,3
6

zzz

zzz
z , 

( )
( )

�
�
�

�

�
�
�

�
=ϕ

+

2

mod
7

zz
z , ( )

( )
�
�
�

�

�
�
�

�
=ϕ

+

3

mod
8

zz
z . 

For 2=+
z  a set of operations of multiple-valued logic 

can be presented as operations of two-valued logic.  

For a two-valued logic we have  

( ) ( ) zzzzzz ′′∨′=′′′ω=′′′ω ,, 20 , 

( ) ( ) zzzzzz ′′∧′=′′′ω=′′′ω ,, 31 , 

( ) zz =ϕ1 , 

( ) zz ¬=ϕ2 . 

In the memory of PC the network operator is presented as 

an integer matrix. The matrix has the same structure as an 

adjacency matrix of the network operator graph. The ones in 

nondiagonal elements of the adjacency matrix are replaced 

by the indices of unary operations, diagonal elements are 
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replaced by the indices of binary operations. 

Consider a two-valued logic function 

4321 xxxxy ¬∨¬∨∧= . 

The network operator for given example is presented in 

Fig. 1.  

The matrix of logical network operator has a form 

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

0000000
1000000
0110000
2000000
0200000
0010000
0010000

� . 

To perform the synthesis the expert sets the initial working 

phase durations for different traffic flow values. For that 

purpose the expert simulates the traffic flow control using 

(18). The active phase durations should provide the optimal 

values of functional (27) or (29).  

VI. AN EXAMPLE 

Consider a network of three subnetworks. The structure of 

connection is presented in Fig. 2. The network is divided 

taking into consideration control synthesis problem (37). We 

include in subnetwork all traffic flows that influence the 

phase durations in the subnetwork. Usually one subnetwork 

consists of neighboring intersections where phase durations 

influence each other specially when the traffic is intense. 

The connection between subnetworks and the indexes of 

their input and output roads are presented in Fig. 2. For 

example, an output road 9 from the subnetwork 1 is 

connected to the input road 3 from the subnetwork 2, an 

output road 12 from the subnetwork 2 is connected to the 

input road 1 from the subnetwork 3.  

For the given network the structures of subnetworks 1 and 

3 coincide and are presented in Fig. 3. The structure of 

subnetwork 2 is depicted in Fig. 4. 

��� ����	
	� �		 ��	�����	 ������	 � �������	 

�	�
��� 

[ ]T432131 == vv , [ ]T1098731 == ww , 

[ ]T543212 =v , [ ]T121110982 =w . 

Fig. 5 shows graph of subnetworks 1 and 3. Fig. 6 shows 

graph of subnetwork 2.  

 

 
 

Fig. 2. A structure of subnetworks connection 

 

 
 

Fig. 3. A structure of subnetworks 1 and 3.  

 

 
 

Fig. 4. A structure of subnetwork 2.  

 

 
Fig. 5. A graph of subnetworks 1 and 3. 

 
 

Fig. 1. The example of the logical network operator 
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Fig. 6. A graph of subnetwork 2. 

 

Adjacency matrices for graphs of the subnetworks are the 

following 

�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�

�

�

=

000000000000
000000000000
000000000000
000000000000
000110000000
000000000000
011000000000
000100100000
001001000000
010001000000
100010100000
100000100000

2A , 

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

==

0000000000
0000000000
0000000000
0000000000
0110000000
1001100000
0001100000
0010010000
0100010000
1000100000

31 AA . 

The connection matrices for the given network are  

�
�
�

�

�

�
�
�

�

�

=

020
030
000
000

1
R , 

�
�
�
�

�

�

�
�
�
�

�

�

=

100
200
003
004
000

2
R , 

�
�
�

�

�

�
�
�

�

�

=

000
000
040
050

3
R . 

To construct a full model for each subnetwork I it is 

necessary to add a capacity matrix iB , a control matrix iC , 

a distribution matrix iD  and an allowable phase matrix iF  

[8]. 

All matrices have the same structure as an adjacency 

matrix has. Indices of nonzero elements in these matrices 

correspond to nonzero elements of adjacency matrix. 

According (8) each active phase of traffic lights prohibits 

certain maneuvers at intersections and changes the structure 

of adjacency matrix. As a result we obtain a configuration 

matrix ( )uA  that determines the flow change in the network 

according to (18). 

When we have solved the synthesis problem we get a k -

valued logical function that determines durations of traffic 

lights phases in number of intervals.  

The synthesis problem is solved for different timing 

periods during a day, for different week days and in case of 

change of network parameters. 

The obtained model can be extended. To solve this 

problem we developed specific software for traffic flow 

simulation CTraf and NOP4C-S [13]. 
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