Radar Based Driver Assistance Systems
Radar Based Driver Assistance Systems

Robert BOSCH Kft.

Budapest, Gyömrői út 104.
Radar Based Driver Assistance Systems

- Sárkány Norbert
 Chassis System Control
 Driver Assistance
 /
 ESA2

Front Radar Platform
Radar Based Driver Assistance Systems

Agenda

- **Driver Assistance Systems**
 - Sensor Data Fusion
 - Basic Terms and Definitions
 - SW Development
 - Radar Basics

- **What can we achieve with a radar sensor?**
 - Adaptive Cruise Control
 - Automatic Emergency Brake
Radar Based Driver Assistance Systems

Agenda
Radar Based Driver Assistance Systems
Use cases addressing end customers needs

Predictive safety
- Predictive emergency braking
- Evasion assistance
- Lane assistance
- Predictive pedestrian protection
- Turn and crossing assistance

Driver comfort & information
- Travel assistance
- Driver monitoring
- Light and sight assistance
- Park and maneuver assistance
Radar Based Driver Assistance Systems

Driver Assistance Systems (DAS)

Definition

- Enhanced safety and driving comfort
- Accident-free driving
- Supports the driver at the best possible rate, especially in critical situations

- **Sensors** survey the surroundings and the interior of the vehicle
- **Control units** monitor and analyze the data of the sensors in real time

Goal:

- **reliable support** with validation by fusion of several sensors to achieve injury, accident free and **comfortable** driving
Radar Based Driver Assistance Systems

Sensor Data Fusion

- Sensor Data Fusion consists of 3 elements:
 - Data fusion
 - Environment Model
 - Situation Interpretation

- Video / Radar / Navigation based joint architecture

<table>
<thead>
<tr>
<th>Camera</th>
<th>Radar</th>
<th>Digital Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane markings</td>
<td>Moving objects</td>
<td>Roadway</td>
</tr>
<tr>
<td>Objects</td>
<td>Stationary objects</td>
<td>Attribute</td>
</tr>
</tbody>
</table>

Fusion
Radar Based Driver Assistance Systems
Basic Terms and Definitions (1)

- **Ground Truth**
 - Observations, identifications of objects to create appropriate representative classes (training sets) for **machine learning** and **algorithm validation**
 - Data is acquired before, during, or after image acquisition
 - Provides the basis for post-processing accuracy assessments
 - Created by manual labeling

- **Key Performance Indicators (KPI)**
 - **Evaluate** the success of an algorithm according to some pre-defined measurable and comparable goal
 - For example: Number of true detections, hourly rate of false detections, reaction time etc.

- **Receiver operating characteristic (ROC) curve**
 - Plots the True Positive Rate against False Positive Rate at various parameter configurations
 - Helps selecting an optimal configuration with respect to costs / benefits

- True Positive: a detection that matches the ground truth (hit)
- True Negative: correct rejection
- False Positive: incorrect detection (false alarm)
- False Negative: incorrect rejection (miss)
Radar Based Driver Assistance Systems
Basic Terms and Definitions (2)

- Automated Evaluation
 - Validation with plenty of recorded measurements
 - Comparison of measurements against Ground Truth
 - Compare the current performance with the previous versions
 - Validate and fulfill the customer criteria

Data Source -> Data Processing -> Evaluation

- Recorded measurements
- Pre-processed data
- Processing Algorithm
- Stat Analysis
- Post-processing
- csv, xls, mat
Radar Based Driver Assistance Systems
What do we want to measure?

- Azimuth, range, [radial velocity]
- Traditionally the RADAR always uses a polar coordinate system
- Equivalent to a Cartesian coordinate system \([r, \Theta] \leftrightarrow [x, y]\)
- We only measure the radial velocity
 - the two components of the velocity vector in a Cartesian coordinate system cannot be reconstructed
Radar Based Driver Assistance Systems

Radar Equation

- The power P_r returning to the receiving antenna is given by the equation:

$$P_r = \frac{P_t G_t A_r \sigma F^4}{(4\pi)^2 R_t^2 R_r^2}$$

- where
 - $P_t =$ transmitter power
 - $G_t = $ gain of the transmitting antenna
 - $A_r = $ effective aperture (area) of the receiving antenna
 - $\sigma = $ radar cross section, or scattering coefficient, of the target
 - $F = $ pattern propagation factor
 - $R_t = $ distance from the transmitter to the target
 - $R_r = $ distance from the target to the receiver.
Radar Based Driver Assistance Systems
Distance Measurement Principle

- We measure the time elapsed between the transmitted pulse and the received echo

\[t_d = 2 \times \frac{D}{c} \iff D = t_d \times \frac{c}{2} \]
Radar Based Driver Assistance Systems

Radial Velocity Measurement Principle

\[f_d = \frac{2v_r f_{tx}}{c} \]

- \(f_{tx} \) = is the transmitters frequency
- \(c \) = is the speed of the light
- \(v_r \) = is the radial speed of the aim

We know our transmit frequency, and the frequency we received from this we can measure the speed of the target object!
Radar Based Driver Assistance Systems

FMCW Principle

- So far we have measured the radial speed using the Doppler-effect.
- We can also measure distance in the frequency domain, using the modulation of the transmitted frequency.
- That is what FMCW stands for: Frequency Modulated Continuous Wave.
- For example:

\[f(t) = f_D + \Delta f \]

\[f_D(t) = f_D + \Delta f \Delta t \]

http://www.radartutorial.eu
Radar Based Driver Assistance Systems
FMCW Principle

The problem we have to solve is that the two signals we want to measure are „encoded” in the same attribute, the frequency

\[f_d = \frac{2D}{c} \cdot \frac{\Delta f}{\Delta t} + \frac{2v_r}{\lambda} \]

- \(f_d \): the „measured/received” frequency
- \(D \): distance to the object
- \(\Delta f/\Delta t \): the rate of change of the frequency
- \(v_r \): radial velocity

We have one equation, and two unknown variables => unsolvable problem?
Radar Based Driver Assistance Systems

FMCW Principle

Frequency-Matching: 2 targets, 3 ramps

- Using three ramps, the method is capable of multi-target scenarios
- Using four ramps, ghost targets can be efficiently suppressed
Radar Based Driver Assistance Systems
ACC Stop and Go

Adaptive Cruise Control
Radar Based Driver Assistance Systems

Adaptive Cruise Control

- **Goal**
 - Blue vehicle should always keep a secure distance to the yellow vehicle while keeping the set speed, or the speed of the yellow vehicle

- **Inputs**
 - Radar data
 - Additional video data
 - Ego car data

- **Reaction**
 - Acceleration or deceleration

- **Achieve comfortable driving through automatic longitudinal control**
Radar Based Driver Assistance Systems

Radar points

► Object types
 ► Stationary objects
 ► Dynamic objects

► Road estimation is based on
 ► the connection of stationary objects
 ► the tracking of moving objects
Radar Based Driver Assistance Systems
Radar-Video Fusion

- Use of road markings (lines) from video based driver assistance systems
Radar Based Driver Assistance Systems

Object classification

- Classification of objects in both sensors:
 - Radar classification based on the behavior of the objects
 - Video classification based image features

- Fusion of video based information and radar based information in one system in order to get reliable data
Radar Based Driver Assistance Systems

Parallel lanes

- Yellow vehicle remains the ACC target object because
 - Connection of stationary objects (reflector posts, guardrail)
 - Video line detection and lane recognition
 - Tracking of red and brown vehicle
- indicates how the road ahead looks like
Radar Based Driver Assistance Systems

Automatic Emergency Braking
Radar Based Driver Assistance Systems

Automatic Emergency Breaking

► Goal
 ▶ Fast reaction to avoid collision

► Input
 ▶ Ego Motion
 ▶ Object type classification
 ▶ Motion model for various object types
 ▶ Calculate time to collision
 ▶ Additional information from the driver
 ▶ Driver monitoring to estimate the level of attention

► Reaction
 ▶ Collision avoidance/mitigation with braking/steering

📌 Achieve safe driving through automatic braking
Radar Based Driver Assistance Systems
System Approach

- Data Fusion from different sources (e.g. Radar, Video, Ultrasonic)
 - Objects, line, lane, road signs etc.

- Environmental Hypothesis
 - E.g.: Parallel Lanes, Object-Lane association

- Situation Analysis
 - Criticality of the situation, Driver Activity

- Decision
 - Warning, Partial Braking, Brake Support, Full Emergency Braking
Radar Based Driver Assistance Systems

How to evaluate system performance?

- **System level performance goals:**
 - Reach safety goals
 - High TP rate
 - Low FP rate
 - Efficient code/algorithm

<table>
<thead>
<tr>
<th></th>
<th>Real life event</th>
<th>No event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection/Reaction</td>
<td>TP</td>
<td>FP</td>
</tr>
<tr>
<td>No Detection/Reaction</td>
<td>FN</td>
<td>TN</td>
</tr>
</tbody>
</table>
Radar Based Driver Assistance Systems

Thank you for your attention!