All Mikroelektronika’s development systems feature a large number of peripheral modules expanding microcontroller’s range of application and making the process of program testing easier. In addition to these modules, it is also possible to use numerous additional modules linked to the development system through the I/O port connectors. Some of these additional modules can operate as stand-alone devices without being connected to the microcontroller.
Keypad 4x4

Keypad 4x4 is used for loading numerics into the microcontroller. It consists of 16 buttons arranged in a form of an array containing four lines and four columns. It is connected to the development system by regular IDC 10 female connector plugged in some development system’s port.

![Figure 1: Keypad 4x4](image1)

![Figure 2: Keypad 4x4 connected to development system](image2)

![Figure 3: Keypad 4x4 connection schematic](image3)

The keyboard is usually used as follows:

1. Four microcontroller’s pins should be defined as outputs, and other four pins should be defined as inputs. In order the keypad to work properly, pull-down resistors should be placed on the microcontroller’s input pins, thus defining logic state when no button is pressed.
2. Then, the output pins are set to logic one (1) and input pins’ logic state is read. By pressing any button, a logic one (1) will appear on some input pin.
3. By combining zeros and ones on the output pins, it is determined which button is pressed.

A far easier way to load data by using keypad 4x4 is by employing ready-to-use functions provided in the *Keypad Library* of any Mikroelektronika’s compiler. On the following pages there are three simple examples written for PIC16F887 microcontroller in *mikroC*, *mikroBasic* and *mikroPascal* programming languages. In all cases, the number loaded via keypad is converted into the equivalent ASCII code (0…9, A…F) and then it is displayed in the second line of LCD display. In this case, pull-down resistors are placed on output pins RD0 - RD3 and are used to determine logic zero (0) in idle state.
unsigned short kp, cnt, oldstate = 0;
char txt[6];

void main() {
cnt = 0; // Reset counter
Keypad_Init(); // Initialize Keypad
ANSEL = 0; // Configure AN pins as digital I/O
ANSELH = 0;
Lcd_Init(); // Initialize LCD
Lcd_Cmd(_LCD_CLEAR); // Clear display
Lcd_Cmd(_LCD_CURSOR_OFF); // Cursor off
Lcd_Out(1, 1, "Times: "); // Write message text on LCD

do {
kp = 0; // Reset key code variable

// Wait for key to be pressed and released

do
kp = Keypad_Key_Click(); // Store key code in kp variable
while (kp); // Prepare value for output, transform key to its ASCII value

switch (kp) {
//case 10: kp = 42; break; // * // Uncomment this block for keypad4x3
//case 11: kp = 48; break; // 0 // Uncomment this block for keypad4x3
//case 12: kp = 35; break; // # // Uncomment this block for keypad4x3
//default: kp += 48;

} // End switch

if (kp != oldstate) {
// Pressed key differs from previous
kp = 0; // Reset key code variable
cnt = 1; // Increment counter
oldstate = kp;
} else {
// Pressed key is same as previous
kp = 0;
cnt++;
}

Lcd_Out(2, 10, " "); // If counter variable overflow
WordToStr(cnt, txt); // Transform counter value to string
Lcd_Out(2, 10, txt); // Display counter value on LCD
}

Example 1: Program written in mikroC PRO for PIC

Figure 4: Keypad, LCD and microcontroller connection schematic
Example 2: Program written in mikroBasic PRO for PIC

```plaintext
program Keypad_Test

dim kp, cnt, oldstate as byte
    txt as char[7]

' Keypad module connections
dim keypadPort as byte at PORTD
' End Keypad module connections

' Lcd module connections
dim LCD_RS as sbit at RB4_bit
LCD_EN as sbit at RB5_bit
LCD_D4 as sbit at RB0_bit
LCD_D5 as sbit at RB1_bit
LCD_D6 as sbit at RB2_bit
LCD_D7 as sbit at RB3_bit

    LCD_RS_Direction as sbit at TRISB4_bit
    LCD_EN_Direction as sbit at TRISB5_bit
    LCD_D4_Direction as sbit at TRISB0_bit
    LCD_D5_Direction as sbit at TRISB1_bit
    LCD_D6_Direction as sbit at TRISB2_bit
    LCD_D7_Direction as sbit at TRISB3_bit
' End Lcd module connections

main:

    oldstate = 0
    cnt = 0
    Keypad_Init() ' Initialize Keypad
    ANSEL = 0 ' Configure AN pins as digital I/O
    ANSELH = 0
    Lcd_Init() ' Initialize LCD
    Lcd_Cmd(_LCD_CLEAR) ' Clear display
    Lcd_Cmd(_LCD_CURSOR_OFF) ' Cursor off
    Lcd_Out(1, 1, "Key :") ' Write message text on LCD
    Lcd_Out(2, 1, "Times:")

    while TRUE

        kp = 0 ' Reset key code variable

        ' Wait for key to be pressed and released
        while ( kp = 0 )
            kp = Keypad_Key_Click() ' Store key code in kp variable
        wend

        ' Prepare value for output, transform key to it’s ASCII value
        select case kp
            case 1: kp = 49 ' 1
            case 2: kp = 50 ' 2
            case 3: kp = 51 ' 3
            case 4: kp = 65 ' A
            case 5: kp = 52 ' 4
            case 6: kp = 53 ' 5
            case 7: kp = 54 ' 6
            case 8: kp = 66 ' B
            case 9: kp = 55 ' 7
            case 10: kp = 56 ' 8
            case 11: kp = 57 ' 9
            case 12: kp = 67 ' D
        end select

        if (kp <> oldstate) then ' Pressed key differs from previous
            cnt = 1
            oldstate = kp
        else ' Pressed key is same as previous
            Inc(cnt)
        end if
        Lcd_Chr(1, 10, kp) ' Print key ASCII value on LCD
        if (cnt = 255) then ' If counter variable overflow
            cnt = 0
            Lcd_Out(2, 10, "     ")
        end if
        WordToStr(cnt, txt) ' Transform counter value to string
        Lcd_Out(2, 10, txt) ' Display counter value on LCD
    wend

end.
```

Commented Code
- **Example of Keypad 4x4**

```plaintext
' Commented code for keypad 4x4
case 10: kp = 42 ' *
case 11: kp = 48 ' 0'
case 12: kp = 35 ' #'
default: kp += 48
```
Example 3: Program written in mikroPascal PRO for PIC

```pascal
program Keypad_Test;
var kp, cnt, oldstate : byte;

// Keypad module connections
var keypadPort : byte at PORTD;
// End Keypad module connections

// Lcd module connections
var LCD_RS : sbit at RB4_bit;
LCD_EN : sbit at RB5_bit;
LCD_D4 : sbit at RB0_bit;
LCD_D5 : sbit at RB1_bit;
LCD_D6 : sbit at RB2_bit;
LCD_D7 : sbit at RB3_bit;

var LCD_RS_Direction : sbit at TRISB4_bit;
LCD_EN_Direction : sbit at TRISB5_bit;
LCD_D4_Direction : sbit at TRISB0_bit;
LCD_D5_Direction : sbit at TRISB1_bit;
LCD_D6_Direction : sbit at TRISB2_bit;
LCD_D7_Direction : sbit at TRISB3_bit;

begin
  oldstate := 0;
  cnt := 0;
  Keypad_Init();
  ANSEL := 0;
  ANSELH := 0;
  Lcd_Init();
  Lcd_Cmd(_LCD_CLEAR);
  Lcd_Cmd(_LCD_CURSOR_OFF);
  Lcd_Out(1, 1, 'Key  :');
  Lcd_Out(2, 1, 'Times:');
  while TRUE do
    begin
      kp := 0;
      while (kp = 0) do
        kp := Keypad_Key_Click();
      case kp of
        1: kp := 49; // 1
        2: kp := 50; // 2
        3: kp := 51; // 3
        4: kp := 65; // A
        5: kp := 52; // 4
        6: kp := 53; // 5
        7: kp := 54; // 6
        8: kp := 66; // B
        9: kp := 55; // 7
        10: kp := 56; // 8
        11: kp := 57; // 9
        12: kp := 67; // C
        13: kp := 42; // *
        14: kp := 48; // 0
        15: kp := 35; // #
        16: kp := 68; // D
      end;
      if (kp <> oldstate) then begin
        cnt := 1;
        oldstate := kp;
      end
      else Inc(cnt);
      Lcd_Chr(1, 10, kp);
      if (cnt = 255) then begin
        cnt := 0;
        Lcd_Out(2, 10, '     ');
      end;
      WordToStr(cnt, txt);
      Lcd_Out(2, 10, txt);
    end;
end;
```

Example 3: Program written in mikroPascal PRO for PIC

```pascal
program Keypad_Test;
var kp, cnt, oldstate : byte;

// Keypad module connections
var keypadPort : byte at PORTD;
// End Keypad module connections

// Lcd module connections
var LCD_RS : sbit at RB4_bit;
LCD_EN : sbit at RB5_bit;
LCD_D4 : sbit at RB0_bit;
LCD_D5 : sbit at RB1_bit;
LCD_D6 : sbit at RB2_bit;
LCD_D7 : sbit at RB3_bit;

var LCD_RS_Direction : sbit at TRISB4_bit;
LCD_EN_Direction : sbit at TRISB5_bit;
LCD_D4_Direction : sbit at TRISB0_bit;
LCD_D5_Direction : sbit at TRISB1_bit;
LCD_D6_Direction : sbit at TRISB2_bit;
LCD_D7_Direction : sbit at TRISB3_bit;
// End Lcd module connections

begin
  oldstate := 0;
  cnt := 0;
  Keypad_Init();
  ANSEL := 0;
  ANSELH := 0;
  Lcd_Init();
  Lcd_Cmd(_LCD_CLEAR);
  Lcd_Cmd(_LCD_CURSOR_OFF);
  Lcd_Out(1, 1, 'Key  :');
  Lcd_Out(2, 1, 'Times:');
  while TRUE do
    begin
      kp := 0;
      while (kp = 0) do
        kp := Keypad_Key_Click();
      case kp of
        1: kp := 49; // 1
        2: kp := 50; // 2
        3: kp := 51; // 3
        4: kp := 65; // A
        5: kp := 52; // 4
        6: kp := 53; // 5
        7: kp := 54; // 6
        8: kp := 66; // B
        9: kp := 55; // 7
        10: kp := 56; // 8
        11: kp := 57; // 9
        12: kp := 67; // C
        13: kp := 42; // *
        14: kp := 48; // 0
        15: kp := 35; // #
        16: kp := 68; // D
      end;
      if (kp <> oldstate) then begin
        cnt := 1;
        oldstate := kp;
      end
      else Inc(cnt);
      Lcd_Chr(1, 10, kp);
      if (cnt = 255) then begin
        cnt := 0;
        Lcd_Out(2, 10, '     ');
      end;
      WordToStr(cnt, txt);
      Lcd_Out(2, 10, txt);
    end;
end.
```
All MikroElektronika’s development systems represent irreplaceable tools for programming and developing microcontroller-based devices. Carefully chosen components and the use of machines of the last generation for mounting and testing thereof are the best guarantee of high reliability of our devices. Due to simple design, a large number of add-on modules and ready to use examples, all our users, regardless of their experience, have the possibility to develop their project in a fast and efficient way.