Recent developments in road traffic control

Source of text and images: Swarco Drive On magazine, issue 01/18
’Intersection of things’ - development possibilities of signallised intersections

- CAN-based network
- New services supporting the concept of Internet of Things
- Other types of sensors can be connected to signal heads
 - Detectors
 - Air quality sensors
- Make the infrastructure ready for connected and automated driving
 - Send messages to vehicles on the traffic situation
’Intersection of things’ - development possibilities of signallised intersections

- Open interfaces for smooth integration
 - CAN protocol
 - Mandatory commands (e.g., switch on signal head) to guarantee interoperability among different vendors and system integrators
 - Optional commands for project-specific requirements

- Efficient maintenance
 - Retrieve detailed information on critical and non-critical failures
 - Predictive and event-triggered activities instead of periodic maintenance
 - Applying remote service patches via a firmware update
’Intersection of things’ - development possibilities of signallised intersections

- Increase energy efficiency
 - The power loss of the electrical interface between the signal controller and the signal head is minimum 5-6 W
 - It can be reduced to 1-2 W
 - Using LEDs, electrical disturbances can be eliminated

- Increase safety level and up-time
 - The system’s residual failure probability rate is at least below 10^{-7} failures per hour (SIL 3)
 - Handling non-dangerous failures independently
Cooperative ITS with Traffic Light Assistance

Drivers are informed when the next traffic light will turn green or red and get a speed recommendation.

Info is visualised on the dashboard of the vehicle or in an app.

Goals:
- Smooth traffic flow at the intersection
- Reduced emission by avoiding unnecessary stops
- More convenient driving experience

Real-life test with Swarco and Volvo in Trondheim, Norway, in 48 intersections.
New opportunities of traffic signals

- Directing a red light beam to the pavement
 - In order to mark the red light visible for people constantly looking at their smartphones
- Measuring NO_x, CO_2 and other traffic-generated greenhouse gases
 - Helps low-emission zones
- Automatic detection of pedestrians waiting to cross the street

V2X Solutions
Connected and cooperative infrastructure
V2X: Networked and cooperative infrastructure
Summary

- What is V2X or „Cooperative Systems“?
 - Standard messages
 - Standard applications
 - Standard communication technologies

- International innovation competition
 - Connected and highly automated driving can be efficient and safe only with V2X

- Promising benefits
 - Savings in energy and resource consumption
 - User experience for the traveller
 - Safety and efficiency gain in mobility

- Standardized
 - Messages have been defined in worldwide standards
 - Vehicles and infrastructure use the same standard.

- Technology is ready
 - Initial „Day1“ applications defined
 - 802.11p products for vehicles and infrastructure tested several times in laboratory and large field tests.

- Economic
 - Many applications are possible with one technology (often already cheaper than alternatives)
 - Tendency for price decreasing (global mass market)

- Development potential
 - Integration to cellular networks, further applications in research and development
Cooperative Systems in transportation
Future visions

- Real Time Traffic **data is shared** between vehicles, roadside infrastructure, traffic management centres and information services

- **Connectivity and multiple sources overtake classic detection**
 - ‘Cooperative’ functions are required in ‘classic’ products to stay in the market

- **Traffic lights ’see’ vehicles**
 - Distinguished by vehicle type (car, truck, bus, tram, emergency service)
 - Intersection OD-matrices

- **Vehicles and traffic lights cooperate actively:**
 - **Prioritisation** is distinctive. Public transport, emergency services etc.
 - Vehcles take into account **coordinated routes**, green waves and corridors
 - Every intersection is sender & receiver of **safety warnings**
What is V2X / Cooperative Systems
Technology aspects

Three key aspects
I. Defined content – i.e. Standard messages
II. Defined applications
III. Embedding in the existing environment

I. Standard messages

“Basis vocabulary“ for the communication worldwide
“Messages“ and their meaning

- Position, speed, direction of a vehicle: CAM - Cooperative Awareness Message (ETSI EN 302 637-2)
- Warning messages: DENM - Decentralized Environmental Notification Message (ETSI EN 302 637-3)
- Intersection traffic light status [and forecast] per signal group: SPaT - Signal Phase and Timing
- Driving relations through intersection: MAP - Map topology
- IVI: In Vehicle Information (ISO/TS 19321)

…and what is always upcoming
II. Defined applications

- **Roadworks Warning (RWW)**
 - Allow vehicles to “see” warning trailers

- **General (safety) warnings**
 - Mark upcoming area to be driven with care
 - Local Hazards
 - Share information on slippery road, jams ends, accidents,…

- **Cooperative Warning**
 - Is precise ‘on the spot’
 - Injects “electronic knowledge” on risks to our safety systems

- **Intersection safety: red-light violation recognition**
 - Vehicle / intersection can warn others
 - Vehicle safety assistant vehicle can (re-)act
II. Defined applications

Prioritisation

- Standard “CAM” messages are used to track continuously the approaching vehicle. Also R09.16 is part of the EU profile for CAM!

- Allow different specific prioritisation E.g.:
 i) trams & buses,
 ii) police & emergency services,
 iii) heavy goods vehicles

- Use V2X built-in security mechanisms to flexibly add & remove usage permissions; E.g. borrow buses from neighbour city for special event and use them in priority schema

Cooperative Prioritisation

- Saves fuel & reduces pollution
- Saves cost (no further technology added / V2X technology can be used for several use-cases, vendor independent)
- Is based on mass (V2X) technology
- Is flexible
- Comes with state-of-the-art security
II. Defined applications

- **Variable signs:** E.g. speed limits
 ![Image: drive-c2x.eu]

- **Shockwave damping**
 - Avoid creation and propagation of jam ends due to oversaturated traffic flow
 - Already shown in A58, NL
 - To be deployed in C-ROADS, Hessen, Germany

Shockwave Damping

Image: trafficwaves.org

- **Today:** congestion-wave in oversaturated traffic
- **Tomorrow:** Speed recommendations between signs directly to the on-board assistance systems

Launch Q4/2018: C-ROADS

Hessen

Continental
II. Defined applications

Traffic statistics
Use vehicle based data

Every second a probe:
V2X-CAM messages as source

- Probe data in intersections
 - Stops (per lane; before/after stop line)
 - Waiting and travel times
 - Origin- Destination (turn relations)

- One detector for several 100m
 - Speed / travel time
 on various lanes or ramps simultaneously
 - Congestion / disappearing of a jam

Cooperative traffic data
- Allows traffic analysis in a new dimension, since it is based on precise single vehicle data
III. Embedding in the existing environment

Modular concept

- Expansion of existing controllers with integrated V2X-functions

Separation of aspects

- Further independent development of
 - V2X Communication technology
 - V2X Standard messages
 - V2X Functional integration in dedicated controller

Today

- 802.11p ETIS ITS G5
- Standardised, tested, series-ready
- Free / no provider

In development

- V-LTE / D2D → 5G
- Project existing V2X standards, provider business model

In future:

- several low latency local communication
Further technology development
stable today – what we will have tomorrow?

Communication technology
Mobile network suppliers include connected and highly automated driving requirements into next generation developments

- **Mobile Edge Computing**
 - Low latency
 - Local, fast ‘computing’ resources as ‘cloudlet’

- **V-LTE**
 - Low latency
 - Device-to-Device (D2D) functions allow communication in case no centrally managed network is available

Bild: http://inside5g.com/mobile-edge-computing-used-to-support-assisted-driving/

5GAA Meldung [im Handelsblatt](https://www.handelsblatt.com) und [bei Volkswagen](https://www.volkswagen.com)
Bluetooth detection in transportation

Source of text and images:
Swarco BlueDataSystem leaflet, Swarco 'Smart City'
Principle and methodology of measurements

- Sensors are placed to monitor the infrastructure.
- Bluetooth devices’ (e.g. smartphone, smart watch, speaker) unique ID is collected anonymously by the sensors.
- The occurrences of the same device are merged and the route and the time elapsed between bypassing different sensors can be reconstructed.
Stationary and temporary Bluetooth detection

- **Stationary:** for calculating current traffic situation
 - Absolute average speed between 0 and 200 km/h
 - Average travel times or travel speed
 - Dwell times at the intersection per direction
 - OD matrix

- **Temporary:** for planning and forecast
 - Redirections
 - Blockings
 - Traffic guidance
 - Analyse traffic quality and traffic distribution

- **Results are used to**
 - Illustrate the current situation and the control of
 - Traffic signals
 - Green - waves
 - Concierge systems
 - Traffic guidance systems
 - Traffic light prioritisation (active BT)

- **Collect their own data**
 - for simulations and predictions
 - to secure the historical situation
 - to analyse the before / during / after situation
 - for comparative representation
 - as a common basis of argumentation
Private transport analysis

- Level of Service
- Origin-destination

Analysis of waiting times
Public transport prioritisation
- BT recognition and tracking
Dynamic clear way

Special vehicle prioritisation and tracking
Blind persons (pedestrians) prioritisation